Group-valued Continuous Functions with the Topology of Pointwise Convergence

نویسنده

  • DMITRI SHAKHMATOV
چکیده

Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set F ⊆ X and every point x ∈ X \ F , there exist f ∈ Cp(X,G) and g ∈ G \ {e} such that f(x) = g and f(F ) ⊆ {e}; (b) G-regular provided that there exists g ∈ G \ {e} such that, for each closed set F ⊆ X and every point x ∈ X \ F , one can find f ∈ Cp(X,G) with f(x) = g and f(F ) ⊆ {e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic. We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel’skĭı as a particular case (when G = R). We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G -regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP. We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed. In notation and terminology we follow [7] and [10] if not stated otherwise. All topological spaces are assumed to be Tychonoff (that is, completely regular T1 spaces), and all topological groups are assumed to be Hausdorff. By N we denote the set of all natural numbers, ω stays for the least nonzero limit ordinal, Z is the discrete additive group of integers, R is the additive group of reals with its usual topology, T stays for the quotient group R/Z, and Z(n) denotes the cyclic group of order n (with the discrete topology). The identity element of a group G is denoted by eG, or simply by e when there is no danger of confusion.

منابع مشابه

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

A Functional Characterization of the Hurewicz Property

For a Tychonoff space $X$, we denote by $C_p(X)$ the space of all real-valued continuous functions on $X$ with the topology of pointwise convergence.  We study a functional characterization of the covering property of Hurewicz.

متن کامل

Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual se...

متن کامل

Semicontinuous limits of nets of continuous functions

In this paper we present a topology on the space of real-valued functions defined on a functionally Hausdorff space X that is finer than the topology of pointwise convergence and for which (1) the closure of the set of continuous functions C(X) is the set of upper semicontinuous functions on X , and (2) the pointwise convergence of a net in C(X) to an upper semicontinuous limit automatically en...

متن کامل

Pointwise convergence and the Wadge hierarchy

We show that if X is a Σ 1 separable metrizable space which is not σ-compact then C p (X), the space of bounded real-valued continuous functions on X with the topology of pointwise convergence, is Borel-Π 1 -complete. Assuming projective determinacy we show that if X is projective not σ-compact and n is least such that X is Σ1n then Cp(X), the space of real-valued continuous functions on X with...

متن کامل

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009